RYSHKOV DOMAINS OF REDUCTIVE ALGEBRAIC GROUPS

Takao Watanabe
RYSHKOV DOMAINS OF REDUCTIVE ALGEBRAIC GROUPS

Takao Watanabe

Dedicated to Professor Ichiro Satake on his 85th birthday

Let G be a connected reductive algebraic group defined over a number field k. In this paper, we introduce the Ryshkov domain R for the arithmetical minimum function m_Q defined from a height function associated to a maximal k-parabolic subgroup Q of G. The domain R is a $Q(k)$-invariant subset of the adele group $G(\mathbb{A})$. We show that a fundamental domain Ω for $Q(k)\backslash R$ yields a fundamental domain for $G(k)\backslash G(\mathbb{A})$. We also see that any local maximum of m_Q is attained on the boundary of Ω.

Introduction

Let P_n be the cone of positive definite n by n real symmetric matrices, and let $m(A)$ be the arithmetical minimum $\min_{0 \neq x \in \mathbb{Z}^n} \langle xAx \rangle$ of $A \in P_n$. The function $f : A \mapsto m(A)/(\det A)^{1/n}$ on P_n is called the Hermite invariant. Since the maximum of f gives the Hermite constant γ_n for dimension n, the determination of local maxima of f is a fundamental problem of lattice sphere packings in Euclidean spaces and the arithmetic theory of quadratic forms. Voronoi’s theorem [1908, Théorème 17] states that f attains a local maximum at a point A if and only if A is perfect and eutactic. Moreover, perfect forms play an essential role in Voronoi’s reduction theory of P_n with respect to the action of $\text{GL}_n(\mathbb{Z})$ (see, e.g., [Martinet 2003] and [Schürmann 2009]). Ryshkov [1970] introduced a locally finite polyhedron $R(m)$ in P_n defined by the condition $m(A) \geq 1$. It is not difficult to show that A is perfect with $m(A) = 1$ if and only if A is a vertex of the boundary of $R(m)$. In particular, any local maximum of the Hermite invariant f is attained on the boundary of $R(m)$. In this sense, we can say that the Ryshkov polyhedron $R(m)$ is well matched with f.

Let G be a connected isotropic reductive algebraic group defined over a number field k, and let Q be a maximal k-parabolic subgroup of G. In previous papers [Watanabe 2000; 2003], we investigated a constant $\gamma(G, Q, k)$ as a generalization of Hermite’s constant γ_n. Precisely, the constant $\gamma(G, Q, k)$ is defined to be

MSC2010: primary 11H55; secondary 11F06, 22E40.

Keywords: reduction theory, fundamental domain, Hermite constant.
the maximum of the function $m_Q(g) = \min_{x \in Q(k) \setminus G(k)} H_Q(xg)$ on $G(k) \setminus G(\mathbb{A})^1$, where H_Q denotes the height function associated to Q. To prove the existence of the maximum of m_Q, we used Borel and Harish-Chandra's reduction theory for the adele group $G(\mathbb{A})$ with respect to $G(k)$. However, a Siegel set in $G(\mathbb{A})$ is not well matched with m_Q in a sense that one cannot obtain any information on locations of extreme points of m_Q in a Siegel set.

The purpose of this paper is to construct a fundamental domain of $G(\mathbb{A})^1$ with respect to $G(k)$ which is well matched with m_Q. We first consider an analog of the Ryshkov polyhedron. We set $X_Q(g) = \{ x \in Q(k) \setminus G(k) : m_Q(g) = H_Q(xg) \}$ for a given $g \in G(\mathbb{A})^1$. This is a finite subset of $Q(k) \setminus G(k)$ and is regarded as an analog of the set of minimal vectors of a positive definite real quadratic form. We define the domain $R(m_Q)$ as follows:

$$R(m_Q) = \{ g \in G(\mathbb{A})^1 : \bar{e} \in X_Q(g) \},$$

where \bar{e} denotes the trivial class $Q(k)$ in $Q(k) \setminus G(k)$. The set $R(m_Q)$ is a left $Q(k)$-invariant closed set with nonempty interior. The interior of $R(m_Q)$ is just a subset R_1 consisting of $g \in R(m_Q)$ such that $X_Q(g)$ is the one-point set $\{ \bar{e} \}$. We denote by R_1^- the closure of R_1 in $G(\mathbb{A})^1$. Both R_1 and R_1^- are also left $Q(k)$-invariant. By Baer and Levi's theorem [1931, Satz 7], there exists an open fundamental domain Ω_Q of R_1^- with respect to $Q(k)$, that is, Ω_Q is a relatively open subset of R_1^- satisfying

- $Q(k)\Omega_Q^- = R_1^-$, where Ω_Q^- denotes the closure of Ω_Q in R_1^-, and
- $\gamma \Omega_Q \cap \Omega_Q^- = \emptyset$ for any $\gamma \in Q(k) \setminus \{ e \}$.

Let Ω_Q° denote the interior of Ω_Q in $G(\mathbb{A})^1$. Then our main theorem is stated as follows:

Theorem. The set Ω_Q° is an open fundamental domain of $G(\mathbb{A})^1$ with respect to $G(k)$. Any local maximum of m_Q is attained on the intersection of the boundary of Ω_Q° and the boundary of R_1^-.

If we denote by r_G the k-rank of the commutator subgroup of G, then G has r_G standard maximal k-parabolic subgroups. Since Ω_Q depends on Q, we obtain r_G different kinds of fundamental domains of $G(\mathbb{A})^1$ with respect to $G(k)$. The method to construct Ω_Q may be viewed as a generalization of the highest point method (see [Grenier 1988] and [Terras 1988, §4.4]). For example, let $k = \mathbb{Q}$, $G = \text{GL}_n$ and Q be a standard maximal \mathbb{Q}-parabolic subgroup such that $Q \setminus G$ is a projective space. Then our construction gives a fundamental domain Ω_Q whose Archimedean part is isomorphic with Grenier's fundamental domain. If we choose another standard maximal \mathbb{Q}-parabolic subgroup of GL_n as Q, then the
Archimedean part of Ω_Q yields a new kind of fundamental domain of \mathbb{P}_n with respect to $\text{GL}_n(\mathbb{Z})$ (see Example 3 in Section 7).

Notation. For a given ring \mathfrak{A}, the set of all n by k matrices with entries in \mathfrak{A} is denoted by $M_{n,k}(\mathfrak{A})$. We write $M_n(\mathfrak{A})$ for $M_{n,n}(\mathfrak{A})$. The transpose of a given matrix $a \in M_{n,k}(\mathfrak{A})$ is denoted by $t^\prime a$. In this paper, k denotes an algebraic number field of finite degree over \mathbb{Q} and \mathfrak{o} the ring of integers of k. The sets of all infinite and finite places of k are denoted by p_∞ and p_f, respectively. For $\sigma \in p_\infty \cup p_f$, k_σ denotes the completion of k at σ. For $\sigma \in p_f$, σ_σ denotes the closure of \mathfrak{o} in k_σ. The étale \mathbb{R}-algebra $k_\infty = k \otimes_{\mathbb{Q}} \mathbb{R}$ is identified with $\prod_{\sigma \in p_\infty} k_\sigma$. Let \mathbb{A} and \mathbb{A}^\times denote the adele ring and the idèle group of k, respectively. The idèle norm of \mathbb{A}^\times is denoted by $| \cdot |_\mathbb{A}$.

1. Height functions

Let G be a connected affine algebraic group defined over k. For any k-algebra \mathfrak{A}, $G(\mathfrak{A})$ stands for the set of \mathfrak{A}-rational points of G. Let $X^*(G)_k$ be the free \mathbb{Z}-module consisting of all k-rational characters of G. For each $g \in G(\mathbb{A})$, we define the homomorphism $\vartheta_G(g) : X^*(G)_k \to \mathbb{R}_{>0}$ by $\vartheta_G(g)(\chi) = |\chi(g)|_{\mathbb{A}}$ for $\chi \in X^*(G)_k$. Then ϑ_G is a homomorphism from $G(\mathbb{A})$ into $\text{Hom}_\mathbb{Z}(X^*(G)_k, \mathbb{R}_{>0})$. We write $G(\mathbb{A})^1$ for the kernel of ϑ_G.

In the following, let G be a connected isotropic reductive group defined over k. We fix a maximal k-split torus S of G and a minimal k-parabolic subgroup P_0 of G containing S. Denote by Φ_k and Δ_k the relative root system of G with respect to S and the set of simple roots of Φ_k corresponding to P_0, respectively. Let M_0 be the centralizer of S in G. Then P_0 has a Levi decomposition $P_0 = M_0U_0$, where U_0 is the unipotent radical of P_0. A k-parabolic subgroup of G containing P_0 is called a standard k-parabolic subgroup of G. Every standard k-parabolic subgroup R of G has a unique Levi subgroup M_R containing M_0. We denote by U_R the unipotent radical of R and by Z_R the greatest central k-split torus in M_R. Throughout this paper, we fix a maximal compact subgroup $K = \prod_{\sigma \in p_\infty} K_\sigma \times \prod_{\sigma \in p_f} K_\sigma$ of $G(\mathbb{A})$ satisfying the following property: for every standard k-parabolic subgroup R of G, $K \cap M_R(\mathbb{A})$ is a maximal compact subgroup of $M_R(\mathbb{A})$, and $M_R(\mathbb{A})$ possesses an Iwasawa decomposition $(M_R(\mathbb{A}) \cap U_0(\mathbb{A}))M_0(\mathbb{A})(K \cap M_R(\mathbb{A}))$.

Let Q be a standard proper maximal k-parabolic subgroup of G. There is only one simple root $\alpha_0 \in \Delta_k$ such that the restriction of α_0 to Z_Q is nontrivial. Let n_Q be the positive integer such that $n_Q^{-1}\alpha_0 | Z_Q$ is a \mathbb{Z}-basis of $X^*(Z_Q/Z_G)_k$. We write α_Q for $n_Q^{-1}\alpha_0 | Z_Q$ and $\widehat{\alpha}_Q$ for $\widehat{d}_Q n_Q^{-1}\alpha_0 | Z_Q$, where

$$\widehat{d}_Q = [X^*(Z_Q/Z_G)_k : X^*(M_Q/Z_G)_k].$$

Then $\widehat{\alpha}_Q$ is a \mathbb{Z}-basis of the submodule $X^*(M_Q/Z_G)_k$ of $X^*(Z_Q/Z_G)_k$. Define...
the map \(z_Q : G(\mathbb{A}) \to Z_G(\mathbb{A}) M_Q(\mathbb{A})^{-1} \setminus M_Q(\mathbb{A}) \) by \(z_Q(g) = Z_G(\mathbb{A}) M_Q(\mathbb{A})^{-1} m \) if \(g = umh \) with \(u \in U_Q(\mathbb{A}) \), \(m \in M_Q(\mathbb{A}) \) and \(h \in K \). This is well defined and left \(Z_G(\mathbb{A}) Q(\mathbb{A})^{-1} \)-invariant. Since \(Z_G(\mathbb{A})^{-1} = Z_G(\mathbb{A}) \cap G(\mathbb{A})^{-1} \subset M_Q(\mathbb{A})^{-1} \), \(z_Q \) gives rise to a map from \(Y_Q = Q(\mathbb{A})^{-1} \setminus G(\mathbb{A})^{-1} \) to \(M_Q(\mathbb{A})^{-1} \setminus (M_Q(\mathbb{A}) \cap G(\mathbb{A}))^{-1} \). Namely, we have the following commutative diagram, whose vertical arrows are natural maps:

\[
\begin{array}{ccc}
Y_Q & \xrightarrow{z_Q} & M_Q(\mathbb{A})^{-1} \setminus (M_Q(\mathbb{A}) \cap G(\mathbb{A}))^{-1} \\
\downarrow & & \downarrow \\
Z_G(\mathbb{A}) Q(\mathbb{A})^{-1} \setminus G(\mathbb{A}) & \xrightarrow{z_Q} & Z_G(\mathbb{A}) M_Q(\mathbb{A})^{-1} \setminus M_Q(\mathbb{A})
\end{array}
\]

We define the height function \(H_Q : G(\mathbb{A}) \to \mathbb{R}_{>0} \) by \(H_Q(g) = |\hat{\alpha}_Q(z_Q(g))|_{\mathbb{A}}^{-1} \) for \(g \in G(\mathbb{A}) \). We notice that the restriction of \(H_Q \) to \(M_Q(\mathbb{A}) \) is a homomorphism from \(M_Q(\mathbb{A}) \) onto \(\mathbb{R}_{>0} \).

Example 1. Let \(G \) be a general linear group \(\text{GL}_n \) defined over the rational number field \(\mathbb{Q} \), \(P_0 \) the group of upper triangular matrices in \(G \) and \(S \) the group of diagonal matrices in \(G \). We fix an integer \(k \in \{1, \ldots, n-1\} \), and let

\[
Q(\mathbb{Q}) = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a \in \text{GL}_k(\mathbb{Q}), \ b \in M_{k,n-k}(\mathbb{Q}), \ d \in \text{GL}_{n-k}(\mathbb{Q}) \right\}.
\]

Then \(Q \) is a standard maximal \(\mathbb{Q} \)-parabolic subgroup of \(G \). The rational character \(\hat{\alpha}_Q \) and the height \(H_Q \) are given by

\[
\hat{\alpha}_Q \left(\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \right) = (\det a)^{(n-k)/r} (\det d)^{-k/r}
\]

and

\[
H_Q \left(\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \right) = |\det a|_{\mathbb{A}}^{-(n-k)/r} |\det d|_{\mathbb{A}}^{k/r},
\]

where \(r \) denotes the greatest common divisor of \(k \) and \(n-k \). The height \(H_Q \) has another expression. To explain this, let \(\mathbb{Q}^n \) be an \(n \)-dimensional column vector space over \(\mathbb{Q} \) with standard basis \(e_1, \ldots, e_n \). The maximal parabolic subgroup \(Q(\mathbb{Q}) \) stabilizes the subspace spanned by \(e_1, \ldots, e_k \). Let \(V_{n,k}(\mathbb{Q}) = \bigwedge^k \mathbb{Q}^n \) be the \(k \)-th exterior product of \(\mathbb{Q}^n \). We set \(V_{n,k}(\mathbb{A}) = V_{n,k}(\mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{A} \) and \(V_{n,k}(\mathbb{Q}_\sigma) = V_{n,k}(\mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}_\sigma \) for \(\sigma \in \mathfrak{p}_\infty \cup \mathfrak{p}_f \). A \(\mathbb{Q} \)-basis of \(V_{n,k}(\mathbb{Q}) \) is formed by the elements \(e_I = e_{i_1} \wedge \cdots \wedge e_{i_k} \) with \(I = \{i_1 < i_2 < \cdots < i_k\} \subset \{1, \ldots, n\} \). For a unique infinite place \(\infty \in \mathfrak{p}_\infty \), we define the local height \(H_\infty : V_{n,k}(\mathbb{Q}_\infty) \to \mathbb{R}_{>0} \) by

\[
H_\infty \left(\sum_I a_I e_I \right) = \left(\sum_I |a_I|_{\infty}^2 \right)^{1/2},
\]
where \(| \cdot |_{\infty} \) denotes the usual absolute value of \(\mathbb{Q}_{\infty} = \mathbb{R} \). For each finite prime \(p \in p_f \), we define the local height \(H_p : V_{n,k}(\mathbb{Q}) \to \mathbb{R}_{>0} \) by

\[
H_p \left(\sum_I a_I e_I \right) = \sup_I |a_I|_p,
\]

where \(| \cdot |_p \) denotes the \(p \)-adic absolute value of \(\mathbb{Q}_p \) normalized so that \(|p|_p = p^{-1} \). Then the global height \(H_{n,k} : V_{n,k}(\mathbb{Q}) \to \mathbb{R}_{>0} \) is defined to be a product of all local heights, that is, \(H_{n,k}(x) = \prod_{\sigma \in p_\infty \cup p_f} H_\sigma(x) \) for \(x \in V_{n,k}(\mathbb{Q}) \). This \(H_{n,k} \) is immediately extended to the subset \(GL(V_{n,k}(\mathbb{A}))V_{n,k}(\mathbb{Q}) \) of the adele space \(V_{n,k}(\mathbb{A}) \) by

\[
H_{n,k}(Ax) = \prod_{\sigma \in p_\infty \cup p_f} H_\sigma(A_\sigma x)
\]

for \(A = (A_\sigma) \in GL(V_{n,k}(\mathbb{A})) \) and \(x \in V_{n,k}(\mathbb{Q}) \). In particular, for \(g \in G(\mathbb{A}) = GL_n(\mathbb{A}) \), we can take the value \(H_{n,k}(ge_1 \wedge ge_2 \wedge \cdots \wedge ge_k) \). We choose a maximal compact subgroup \(K_\infty \) of \(G(\mathbb{Q}_\infty) \) as \(\{ g \in G(\mathbb{Q}_\infty) : |g|^{-1} = g \} \). Let

\[
K_f = \prod_{p \in p_f} GL_n(\mathbb{Z}_p) \quad \text{and} \quad K = K_\infty \times K_f.
\]

Then, by elementary computations, we have

\[
H_{n,k}(ge_1 \wedge ge_2 \wedge \cdots \wedge ge_k) = \left| \det a \right|_\mathbb{A} \quad \text{if} \quad g = h \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}
\]

with \(h \in K, \ a \in GL_k(\mathbb{A}), \ b \in M_{k,n-k}(\mathbb{A}) \) and \(d \in GL_{n-k}(\mathbb{A}) \). Therefore, if \(g \in G(\mathbb{A})^1 \), that is, \(\left| \det g \right|_\mathbb{A} = 1 \), then

\[
H_Q(g) = H_{n,k}(g^{-1}e_1 \wedge g^{-1}e_2 \wedge \cdots \wedge g^{-1}e_k)^{n/r}.
\]

2. Twisted height functions restricted to one parameter subgroups

Let \(N_G(S) \) be the normalizer of \(S \) in \(G \) and \(W_G = N_G(S)(k)/M_0(k) \) the Weyl group of \(G \) with respect to \(S \). For a simple root \(\alpha \in \Delta_k, \ s_\alpha \in W_G \) denotes the simple reflection corresponding to \(\alpha \). Then \(\{ s_\alpha \}_{\alpha \in \Delta_k} \) generates \(W_G \). We denote by \(W^O_G \) the subgroup of \(W_G \) generated by \(\{ s_\alpha \}_{\alpha \in \Delta_k \setminus \{ \alpha_0 \}} \). For each \(w \in W_G \), we use the same notation \(w \) for a representative of \(w \) in \(N_G(S)(k) \). The following cell decomposition of \(G(k) \) holds via Bruhat decomposition [Borel and Tits 1965, Proposition 4.10, Corollaire 5.20]:

\[
G(k) = \bigsqcup_{[w] \in W^O_G\backslash W_G/W^O_G} Q(k)wQ(k),
\]

where \([w]\) stands for the class \(W^O_GwW^O_G \) in \(W^O_G\backslash W_G/W^O_G \).

The Weyl group W_G acts on $X^*(S)_k$ by $w \cdot \chi : t \mapsto \chi(w^{-1}tw)$ for $w \in W_G$ and $\chi \in X^*(S)_k$. We consider the restriction $\hat{\alpha}_Q|_S$ of the rational character $\hat{\alpha}_Q$ of M_Q to S.

Lemma 1. The subgroup of W_G fixing $\hat{\alpha}_Q|_S$ is equal to W^Q_G.

Proof. Put $W' = \{w \in W_G : w \cdot \hat{\alpha}_Q|_S = \hat{\alpha}_Q|_S\}$. Since a representative of $w \in W^Q_G$ is contained in $M_Q(k)$, we have $\hat{\alpha}_Q(w^{-1}tw) = \hat{\alpha}_Q(w)^{-1}\hat{\alpha}_Q(t)\hat{\alpha}_Q(w) = \hat{\alpha}_Q(t)$ for all $t \in S$. Hence W^Q_G is contained in W'. By [Humphreys 1990, §1.12 Theorem (a) and (c)] , W' is generated by a subset $W' \cap \{s_\alpha\}_{\alpha \in \Delta_k}$ of simple reflections. From $W^Q_G \subset W'$, it follows $\{s_\alpha\}_{\alpha \in \Delta_k \setminus \{\alpha_0\}} \subset W' \cap \{s_\alpha\}_{\alpha \in \Delta_k} \subset \{s_\alpha\}_{\alpha \in \Delta_k}$. Since $\hat{\alpha}_Q$ is nontrivial on S/Z_G, $W' \cap \{s_\alpha\}_{\alpha \in \Delta_k}$ must equal $\{s_\alpha\}_{\alpha \in \Delta_k \setminus \{\alpha_0\}}$. Therefore W' coincides with W^Q_G. \hfill \square

Let $X^*_*(S)_k$ be the free \mathbb{Z}-module consisting of all k-rational cocharacters of S. A natural pairing

$$\langle \cdot, \cdot \rangle : X^*_*(S)_k \times X^*_*(S)_k \to \mathbb{Z}$$

defined as in [Borel 1991, §8.6] is a regular pairing over \mathbb{Z}.

Lemma 2. Let w_1 and w_2 be elements of W_G such that $w_1^{-1}W^Q_G \neq w_2^{-1}W^Q_G$. Then there exist a cocharacter $\xi = \xi_{w_1w_2} \in X^*_*(S)_k$ such that

$$H_Q(w_1\xi(\lambda)w_1^{-1}) > H_Q(w_2\xi(\lambda)w_2^{-1})$$

holds for all $\lambda \in \mathbb{A}^\times_{>1}$, where $\mathbb{A}^\times_{>1}$ denotes the set of $\lambda \in \mathbb{A}^\times$ satisfying $|\lambda|_{\mathbb{A}} > 1$.

Proof. Since $w_1^{-1} \cdot \hat{\alpha}_Q|_S - w_2^{-1} \cdot \hat{\alpha}_Q|_S \neq 0$ by Lemma 1, there is a $\xi \in X^*_*(S)_k$ such that $\langle w_1^{-1} \cdot \hat{\alpha}_Q|_S - w_2^{-1} \cdot \hat{\alpha}_Q|_S, \xi \rangle < 0$. The value $\ell = \langle w_1^{-1} \cdot \hat{\alpha}_Q|_S - w_2^{-1} \cdot \hat{\alpha}_Q|_S, \xi \rangle$ is a negative integer. We have

$$\hat{\alpha}_Q(w_1\xi(\lambda)w_1^{-1}) \cdot \hat{\alpha}_Q(w_2\xi(\lambda)w_2^{-1})^{-1} = \lambda^\ell$$

for all $\lambda \in G_m$. Therefore,

$$H_Q(w_1\xi(\lambda)w_1^{-1})H_Q(w_2\xi(\lambda)w_2^{-1})^{-1} = |\lambda|_{\mathbb{A}}^{-\ell} > 1$$

holds for all $\lambda \in \mathbb{A}^\times_{>1}$. \hfill \square

3. **The Hermite function associated to Q and minimal points**

We set $X_Q = Q(k) \setminus G(k)$, which is regarded as a subset of $Y_Q = Q(\mathbb{A})^1 \setminus G(\mathbb{A})^1$. Let $\pi_X : G(k) \to X_Q$ be the natural quotient map. The symbol $\tilde{e} = \pi_X(e) \in X_Q$ denotes the class of the unit element $e \in G(k)$. The Hermite function

$$m_Q : G(\mathbb{A})^1 \to \mathbb{R}_{>0}$$
is defined to be
\[m_Q(g) = \min_{x \in X_Q} H_Q(xg). \]

By definition, \(m_Q \) is a positive valued continuous function on \(G(k) \backslash G(\mathbb{A})^1 / K \).

For each \(g \in G(\mathbb{A})^1 \), we put
\[X_Q(g) = \{ x \in X_Q : m_Q(g) = H_Q(xg) \}, \]
which is a finite subset of \(X_Q \). Thus we can define the counting function \(n_Q(g) = \#X_Q(g) \).

Lemma 3. For any \(g \in G(\mathbb{A})^1 \), \(\gamma \in G(k) \) and \(h \in K \), one has \(X_Q(\gamma gh) = X_Q(g)\gamma^{-1} \). Especially, the counting function \(n_Q \) is left \(G(k) \)-invariant and right \(K \)-invariant.

The following lemma is proved by the same method as in [Watanabe 2012, Proof of Proposition 4.1].

Lemma 4. For \(g \in G(\mathbb{A})^1 \), there is a neighborhood \(\mathcal{U} \) of \(g \) in \(G(\mathbb{A})^1 \) such that \(X_Q(g') \subset X_Q(g) \) for all \(g' \in \mathcal{U} \).

Example 2. Let \(G \) be a general linear group \(GL_n \) defined over \(\mathbb{Q} \). We keep notations used in Example 1. In this case, we can express \(m_Q \) in terms of some minimum of positive definite symmetric matrices. Since \(GL_n / \mathbb{Q} \) is of class number one, \(G(\mathbb{A})^1 = \{ g \in GL_n(\mathbb{A}) : |\det g|_\mathbb{A} = 1 \} \) has the following decomposition:
\[G(\mathbb{A})^1 = G(\mathbb{Q})(G(\mathbb{Q}_\infty)^1 \times K_f), \]
where \(G(\mathbb{Q}_\infty)^1 = \{ g \in GL_n(\mathbb{Q}_\infty) : \det g = \pm 1 \} \) and \(K_f = \prod_{p \in \mathcal{P}} GL_n(\mathbb{Z}_p) \). We fix \(g = \delta(g_\infty \times g_f) \in G(\mathbb{A})^1 \) with \(\delta \in G(\mathbb{Q}) \), \(g_\infty \in G(\mathbb{Q}_\infty)^1 \) and \(g_f \in K_f \). From the left \(G(\mathbb{Q}) \)-invariance and the right \(K \)-invariance of \(m_Q \), it follows that
\[m_Q(g) = m_Q(g_\infty) = \min_{x \in X_Q} H_Q(xg_\infty) = \min_{\gamma \in G(\mathbb{Q})} H_Q(\gamma g_\infty). \]
Furthermore, since \(G(\mathbb{Q}) = Q(\mathbb{Q}) GL_n(\mathbb{Z}) \) and \(H_Q \) is left \(Q(\mathbb{Q}) \)-invariant, we have
\[m_Q(g) = \min_{\gamma \in GL_n(\mathbb{Z})} H_Q(\gamma g_\infty). \]
An elementary proof of the decomposition \(G(\mathbb{Q}) = Q(\mathbb{Q}) GL_n(\mathbb{Z}) \) is found in [Shimura 1994, Theorem 3]. By Example 1,
\[
H_Q(\gamma g_\infty) = H_{n,k}(g_\infty^{-1} \gamma^{-1} e_1 \wedge \cdots \wedge g_\infty^{-1} \gamma^{-1} e_k)^{n/r}
= H_\infty(g_\infty^{-1} \gamma^{-1} e_1 \wedge \cdots \wedge g_\infty^{-1} \gamma^{-1} e_k)^{n/r} \prod_{p \in \mathcal{P}} H_p(\gamma^{-1} e_1 \wedge \cdots \gamma^{-1} e_k)^{n/r}
= H_\infty(g_\infty^{-1} \gamma^{-1} e_1 \wedge \cdots \wedge g_\infty^{-1} \gamma^{-1} e_k)^{n/r}.
\]
Here we notice that $H_p(\gamma^{-1}e_1 \wedge \cdots \wedge \gamma^{-1}e_k) = 1$ for all $p \in p_f$ and $\gamma \in \text{GL}_n(\mathbb{Z})$. For a given $\gamma \in \text{GL}_n(\mathbb{Z})$, X_γ stands for the n by k matrix consisting of the first k columns of γ. Binet’s formula (see [Bombieri and Gubler 2006, Proposition 2.8.8]) yields

$$H_\infty(g_\infty^{-1}\gamma^{-1}e_1 \wedge \cdots \wedge g_\infty^{-1}\gamma^{-1}e_k) = \det(t^TX_\gamma^{-1}t g_\infty^{-1}g_\infty^{-1}X_\gamma^{-1})^{1/2}.$$

As a consequence, we obtain

$$m_Q(g) = \min_{X \in \mathbb{M}_{n,k}(\mathbb{Z})^*} \det(t^X t g_\infty^{-1}g_\infty^{-1}X)^{n/2r},$$

where $\mathbb{M}_{n,k}(\mathbb{Z})^*$ denotes the set of X_γ for all $\gamma \in \text{GL}_n(\mathbb{Z})$. In the case of $k = 1$, $\mathbb{M}_{n,1}(\mathbb{Z})^*$ is just the set of primitive vectors of the lattice \mathbb{Z}^n, and hence $m_Q(g)$ coincides with the $n/2$ power of the arithmetical minimum of the positive definite symmetric matrix $t g_\infty^{-1}g_\infty^{-1}$.

4. The Ryshkov domain of G associated to Q

We define the Ryshkov domain $R = R(m_Q)$ of m_Q by

$$R = R(m_Q) = \{g \in G(\mathbb{A})^1 : m_Q(g)/H_Q(g) \geq 1\}.$$

Since $m_Q(g) \leq H_Q(g)$ holds for all $g \in G(\mathbb{A})^1$, we have

$$R = \{g \in G(\mathbb{A})^1 : m_Q(g) = H_Q(g)\} = \{g \in G(\mathbb{A})^1 : \tilde{e} \in X_Q(g)\}.$$

Since both H_Q and m_Q are continuous, R is a closed subset in $G(\mathbb{A})^1$.

Lemma 5. One has $Q(k)R K = R$ and $G(\mathbb{A})^1 = G(k)R$.

Proof. The first assertion is obvious by the definition of H_Q. To prove the second assertion, we choose a minimal point $x \in X_Q(g)$ for a given $g \in G(\mathbb{A})^1$. There is a $\gamma \in G(k)$ such that $x = \pi_X(\gamma)$. Then $H_Q(xg) = H_Q(\gamma g) = m_Q(g) = m_Q(\gamma g)$ since m_Q is left $G(k)$-invariant. Therefore, $\gamma g \in R$. \qed

Lemma 6. Let C be an arbitrary subset of $G(\mathbb{A})^1$, and let $g \in G(\mathbb{A})^1$ and $\gamma \in G(k)$.

1. $\gamma g \in R$ if and only if $\pi_X(\gamma) \in X_Q(g)$.
2. $X_Q(g) = \pi_X(\{\gamma \in G(k) : \gamma g \in R\})$.
3. $\gamma C \subset R$ if and only if $\pi_X(\gamma) \in \bigcap_{g \in C} X_Q(g)$.
4. $\bigcap_{g \in R} X_Q(g) = \{\tilde{e}\}$.
5. $\gamma R \subset R$ if and only if $\gamma \in Q(k)$.

Proof. By definition, \(\gamma g \in R \) if and only if \(m_Q(\gamma g) = H_Q(\gamma g) \). This is equivalent to \(\pi_X(\gamma) \in X_Q(g) \) because \(m_Q(\gamma g) = m_Q(g) \). Both (2) and (3) follow from (1). For a point \(x = \pi_X(\gamma) \in \bigcap_{g \in R} X_Q(g) \), we have \(\gamma Q(k)R \subseteq R \); in other words, \(x Q(k) \subseteq \bigcap_{g \in R} X_Q(g) \). Since \(x Q(k) \) is an infinite set for \(x \neq \tilde{e} \) by Bruhat decomposition, we must have \(x = \tilde{e} \). This shows (4). Item (5) follows from (3) and (4).

\[2 \]

Lemma 7. Let \(g_0 \in R \) be an element such that \(n_Q(g_0) > 1 \) and \(x_0 \) an arbitrary element in \(X_Q(g_0) \). Then, any neighborhood \(\mathfrak{U} \) of \(g_0 \) in \(G(\mathbb{A}) \) contains a point \(g \) such that \(X_Q(g) \subset X_Q(g_0) \) and \(x_0 \not\in X_Q(g) \).

Proof. We may assume \(\mathfrak{U} \) satisfies \(X_Q(g) \subset X_Q(g_0) \) for all \(g \in \mathfrak{U} \) by Lemma 4. Since \(n_Q(g_0) > 1 \), there is an \(x \in X_Q(g_0) \) such that \(x \neq \tilde{e} \). This \(x \) is of the form \(\pi_X(w \gamma) \) with \(w \in W_G \setminus W_G^Q \) and \(\gamma \in Q(k) \). By Lemma 2, there is a cocharacter \(\xi = \xi_{w,e} \in X_*(S) \) such that \(H_Q(w \xi(\lambda)w^{-1}) > H_Q(\xi(\lambda)) \) holds for all \(\lambda \in \mathbb{A}_x^{>1} \). Let \(\lambda \in \mathbb{A}_x^{>1} \) be an element sufficiently close to 1 so that \(g_\lambda = \gamma^{-1}\xi(\lambda)g_0 \) is contained in \(\mathfrak{U} \). We have

\[
H_Q(g_\lambda) = H_Q(\xi(\lambda)g_0) = H_Q(\xi(\lambda))H_Q(\gamma g_0)
= H_Q(\xi(\lambda))H_Q(g_0) = H_Q(\xi(\lambda))m_Q(g_0)
\]

and

\[
H_Q(xg_\lambda) = H_Q(w \xi(\lambda)g_0) = H_Q(w \xi(\lambda)w^{-1})H_Q(w \gamma g_0)
= H_Q(w \xi(\lambda)w^{-1})m_Q(g_0).
\]

If \(x_0 = \tilde{e} \), then we choose \(\lambda \) sufficiently close to 1 satisfying \(\lambda^{-1} \in \mathbb{A}_x^{>1} \). Since \(X_Q(g_\lambda) \subset X_Q(g_0) \) and \(m_Q(g_\lambda) \leq H_Q(xg_\lambda) < H_Q(g_\lambda) \), \(X_Q(g_\lambda) \) does not contain \(\tilde{e} \). If \(x_0 \neq \tilde{e} \), then we choose \(x \) as \(x_0 \) and \(\lambda \in \mathbb{A}_x^{>1} \) sufficiently close to 1. Since \(m_Q(g_\lambda) \leq H_Q(g_\lambda) < H_Q(x_0g_\lambda) \), \(X_Q(g_\lambda) \) does not contain \(x_0 \).

\[3 \]

Lemma 8. \(\min_{g \in G(\mathbb{A})^1} n_Q(g) = \min_{g \in R} n_Q(g) = 1 \).

Proof. From Lemma 5 and the \(G(k) \)-invariance of \(n_Q \), it follows that

\[
\min_{g \in G(\mathbb{A})^1} n_Q(g) = \min_{g \in R} n_Q(g).
\]

If \(g_0 \in R \) satisfies \(\min_{g \in R} n_Q(g) = n_Q(g_0) > 1 \), then by Lemmas 5 and 7, there exist a point \(g_1 \in G(\mathbb{A})^1 \) and \(\gamma_1 \in G(k) \) such that \(n_Q(\gamma_1 g_1) = n_Q(g_1) < n_Q(g_0) \) and \(\gamma_1 g_1 \in R \). This is a contradiction.

We define the subset \(R_1 \) of \(R \) by

\[
R_1 = \{ g \in R : n_Q(g) = 1 \} = \{ g \in G(\mathbb{A})^1 : X_Q(g) = \{ \tilde{e} \} \}.
\]

Lemma 9. \(R_1 \) coincides with the interior \(R^o \) of \(R \) in \(G(\mathbb{A})^1 \).
Proof. For $g \in R_1$, we choose a neighborhood \mathcal{U} of g in $G(\mathbb{A})^1$ as in Lemma 4. Then $\mathcal{U} \subset R_1$. Therefore, R_1 is open and is contained in R°. If there exists an element $g_0 \in R^\circ$ such that $n_Q(g_0) > 1$, then, by Lemma 7, R° contains an element g satisfying $\hat{e} \not\in X_Q(g)$. This contradicts $g \in R$. \hfill \Box

It is obvious that $G(k)R_1 = \{ g \in G(\mathbb{A})^1 : n_Q(g) = 1 \}$.

Lemma 10. $G(k)R_1$ is open and dense in $G(\mathbb{A})^1$.

Proof. Since R_1 is open in $G(\mathbb{A})^1$, so is $G(k)R_1$. We assume $G(\mathbb{A})^1 \setminus G(k)R_1$ has an interior point g_0. Let \mathcal{U} be a neighborhood of g_0 in $G(\mathbb{A})^1$ so that $\mathcal{U} \cap G(k)R_1 = \emptyset$. By Lemma 5, we can take $\gamma_0 \in G(k)$ such that $\gamma_0 g_0 \in R$. Since $n_Q(\gamma_0 g_0) = n_Q(g_0) > 1$, by Lemmas 5 and 7, there exist $g_1 \in \gamma_0 \mathcal{U}$ and $\gamma_1 \in G(k)$ such that $n_Q(g_1) < n_Q(g_0)$ and $\gamma_1 g_1 \in R$. If $n_Q(g_1) > 1$, then there exist $g_2 \in \gamma_1 \gamma_0 \mathcal{U}$ and $\gamma_2 \in G(k)$ such that $n_Q(g_2) < n_Q(g_1)$ and $\gamma_2 g_2 \in R$. This process terminates after finitely many iterations. At the last step, we obtain an element $g_\ell \in \gamma_{\ell-1} \cdots \gamma_0 \mathcal{U}$ such that $n_Q(g_\ell) = 1$. Then $(\gamma_{\ell-1} \cdots \gamma_0)^{-1} g_\ell$ is contained in $\mathcal{U} \cap G(k)R_1$. This contradicts $\mathcal{U} \cap G(k)R_1 = \emptyset$. Therefore, $G(\mathbb{A})^1 \setminus G(k)R_1$ is nowhere dense in $G(\mathbb{A})^1$. \hfill \Box

Lemma 11. For $\gamma \in G(k)$, $R_1 \cap \gamma R \neq \emptyset$ if and only if $\gamma \in Q(k)$.

Proof. If $R_1 \cap \gamma R$ has an element g, then $\pi_X(\gamma^{-1}) \in X_Q(g) = \{ \hat{e} \}$ by Lemma 6. \hfill \Box

Lemma 12. Let R_1^- be the closure of R_1. Then we have the following subdivision of $G(\mathbb{A})^1$:

$$G(\mathbb{A})^1 = \bigcup_{\gamma Q(k) \in G(k)/Q(k)} \gamma R_1^-.$$

Proof. We fix an arbitrary $g \in G(\mathbb{A})^1$. By Lemma 10, there exists a sequence \{gn\} \subset G(k)R_1 such that $\lim_{n \to \infty} g_n = g$. We take a neighborhood \mathcal{U} of g as in Lemma 4 and may assume that \{gn\} \subset \mathcal{U}. Since $g_n \in G(k)R_1$, $X_Q(g_n)$ consists of a single element $\pi_X(\gamma_n)$, where $\gamma_n \in G(k)$. From $g_n \in \mathcal{U}$, it follows that $\pi_X(\gamma_n) \in X_Q(g)$ for all n. Since $X_Q(g)$ is a finite set, we can take a subsequence \{gn_j\} such that $\pi_X(\gamma_{n_j}) = \pi_X(\gamma) \in X_Q(g)$ for all n_j. Then \{gn_j\} \subset $\gamma^{-1}R_1$, and g is contained in the closure of $\gamma^{-1}R_1$. \hfill \Box

For $g \in G(\mathbb{A})^1$, we put

$$S_Q(g) = \pi_X(\{ \gamma \in G(k) : \gamma g \in R_1^- \}).$$

By Lemmas 6 and 12, $S_Q(g)$ is a nonempty subset of $X_Q(g)$.

Lemma 13. For $g_0 \in G(\mathbb{A})^1$, there is a neighborhood \mathcal{U} of g_0 in $G(\mathbb{A})^1$ such that $S_Q(g) \subset S_Q(g_0)$ for all $g \in \mathcal{U}$.
Proof. Let \(\mathcal{U} \) be a neighborhood of \(g_0 \) such that \(X_Q(g) \subset X_Q(g_0) \) for all \(g \in \mathcal{U} \). Since \(g_0 \not\in \gamma^{-1}R_1^{-} \) for any \(\pi_{X}(\gamma) \in X_Q(g_0) \setminus S_Q(g_0) \), we can take a sufficiently small \(\mathcal{U} \) so that \(\mathcal{U} \cap \gamma^{-1}R_1^{-} = \emptyset \) for all \(\pi_{X}(\gamma) \in X_Q(g_0) \setminus S_Q(g_0) \). Then, for any \(g \in \mathcal{U} \), \(S_Q(g) \cap X_Q(g_0) \setminus S_Q(g_0) \) is empty; that is, \(S_Q(g) \subset S_Q(g_0) \). \(\square \)

Remark. We do not know whether \(R_1^{-} = R \) holds or not in general. If it does, then \(S_Q(g) = X_Q(g) \) holds for all \(g \).

5. A fundamental domain of \(G(\mathbb{A})^1 \) with respect to \(G(k) \)

Definition. Let \(T \) be a locally compact Hausdorff space and \(\Gamma \) be a discrete group acting on \(T \) from the left. Assume that the action of \(\Gamma \) on \(T \) is properly discontinuous. An open subset \(\Omega \) of \(T \) is called an open fundamental domain of \(T \) with respect to \(\Gamma \) if \(\Omega \) satisfies the following conditions:

1. \(T = \Gamma \Omega^- \), where \(\Omega^- \) stands for the closure of \(\Omega \) in \(T \), and
2. \(\Omega \cap \gamma \Omega^- = \emptyset \) if \(\gamma \in \Gamma \setminus \{e\} \).

A subset \(F \) of \(T \) is called a fundamental domain of \(T \) with respect to \(\Gamma \) if there is an open fundamental domain \(\Omega \) as above such that \(\Omega \subset F \subset \Omega^- \).

By Baer and Levi’s theorem [1931] (see also [van der Waerden 1935, §10]), an open fundamental domain of \(T \) with respect to \(\Gamma \) exists if the set of points stabilized by some nontrivial element of \(\Gamma \) is discrete in \(T \). Thus there exists an open fundamental domain \(\Omega_Q \) of \(R_1^{-} \) with respect to \(Q(k) \).

For a given subset \(A \) of \(R_1^{-} \), \(A^\circ \) and \(A^- \) denote the interior and the closure of \(A \) in \(G(\mathbb{A})^1 \), respectively. Since \(R_1^{-} \) is closed in \(G(\mathbb{A})^1 \), the closure of \(A \) in \(R_1^{-} \) coincides with \(A^- \).

Lemma 14. Let \(\Omega_Q \) be an open fundamental domain of \(R_1^{-} \) with respect to \(Q(k) \). Then one has \(\Omega_Q^\circ = \Omega_Q \cap R_1 \) and \(\Omega_Q^- = (\Omega_Q \cap R_1)^- \).

Proof. Since \(\Omega_Q \) is an open set in \(R_1^{-} \) with respect to the relative topology, there is an open set \(\mathcal{U} \) in \(G(\mathbb{A})^1 \) such that \(\Omega_Q = R_1^{-} \cap \mathcal{U} \). Therefore, \(\Omega_Q \cap R_1 = \mathcal{U} \cap R_1 \) is open in \(G(\mathbb{A})^1 \), and hence \(\Omega_Q^\circ = \Omega_Q \cap R_1 \). Since \(R_1 \) is dense in \(R_1^{-} \) and \(\Omega_Q \) is relatively open in \(R_1^{-} \), the closure of \(\Omega_Q \cap R_1 \) in \(R_1^{-} \) contains \(\Omega_Q \), that is, \(\Omega_Q \subset (\Omega_Q \cap R_1)^- \). Hence \(\Omega_Q^- = (\Omega_Q \cap R_1)^- \). \(\square \)

Theorem 15. Let \(\Omega_Q \) be an open fundamental domain of \(R_1^{-} \) with respect to \(Q(k) \). Then \(\Omega_Q^\circ \) is an open fundamental domain of \(G(\mathbb{A})^1 \) with respect to \(G(k) \).

Proof. From \(R_1^{-} = Q(k)\Omega_Q^- \) and Lemma 12, it follows \(G(\mathbb{A})^1 = G(k)\Omega_Q^- \). For \(\gamma \in G(k) \), we assume \(\Omega_Q^\circ \cap \gamma \Omega_Q^- \not\subset \emptyset \). By Lemma 11, \(\gamma \) is contained in \(Q(k) \). Since \(\Omega_Q \) is an open fundamental domain of \(R_1^{-} \) with respect to \(Q(k) \), \(\gamma \) must be equal to \(e \). \(\square \)

For a given subset \(A \) of \(G(\mathbb{A})^1 \), we denote by \(\partial A \) the boundary of \(A \).
Lemma 16. If $g_0 \in R_1$ attains a local maximum of m_Q, then g_0 is in ∂R_1.

Proof. Suppose $g_0 \in R_1$. Since R_1 is open, zg_0 is contained in R_1 if $z \in Z_Q(\mathbb{A})$ is sufficiently close to e. Then

$$m_Q(zg_0) = H_Q(zg_0) = H_Q(z)H_Q(g_0) = H_Q(z)m_Q(g_0).$$

Since $H_Q(z)$ can vary on the interval $(1 - \epsilon, 1 + \epsilon)$ for a sufficiently small $\epsilon > 0$, $m_Q(g_0)$ is not a local maximum of m_Q. \hfill \Box

Since $(\Omega_Q^\partial)^\circ = \Omega_Q^\partial \subset R_1$, the following theorem immediately follows from Lemma 16.

Theorem 17. Let Ω_Q be the same as in Theorem 15. If $g_0 \in \Omega_Q^\partial$ attains a local maximum of m_Q, then g_0 is in $\partial \Omega_Q^\partial \cap \partial R_1$.

Remark. A point $g_0 \in G(\mathbb{A})^1$ is said to be extreme if g_0 attains a local maximum of m_Q. By Theorem 17, any extreme point is contained in $G(k)(\partial \Omega_Q^\partial \cap \partial R_1^\partial)$. A candidate of the notion analogous to perfect quadratic forms is the following: a point $g \in G(\mathbb{A})^1$ is said to be Q-perfect if there is a neighborhood U of g such that

$$U \cap \bigcap_{\pi(x) \in S_Q(g)} \delta^{-1}R_1^\partial = \{g\}.$$

6. The case when G is of class number one

We put $K_f = \prod_{\sigma \in p_f} K_{\sigma}$, $G_{\mathbb{A}, \infty} = G(k_\infty) \times K_f$, $G_{\mathbb{A}, \infty}^1 = G_{\mathbb{A}, \infty} \cap G(\mathbb{A})^1$ and $G_o = G(k) \cap G_{\mathbb{A}, \infty}$. By identifying $G(k_\infty)$ with the subgroup

$$\{(g_\sigma) \in G(\mathbb{A}) : g_\sigma = e \text{ for all } \sigma \in p_f\}$$

of $G(\mathbb{A})$, we put $G(k_\infty)^1 = G(k_\infty) \cap G(\mathbb{A})^1$. The number $n_k(G)$ of double cosets in $G(\mathbb{A})$ modulo $G(k)$ and $G_{\mathbb{A}, \infty}$ is called the class number of G. For example, $n_k(GL_n)$ is equal to the class number of k. If G is almost k-simple, k-isotropic and simply connected, then $n_k(G) = 1$ by the strong approximation theorem. In this section, we assume that $n_k(G) = 1$. Then $G(\mathbb{A})^1 = G(k)G_{\mathbb{A}, \infty}^1$. Let h_Q be the number of double cosets of $G(k)$ modulo $Q(k)$ and G_o. By [Borel 1963, Proposition 7.5], h_Q is equal to the class number of M_Q. Let $\{\xi_1 = e, \xi_2, \ldots, \xi_{h_Q}\}$ be a complete system of representatives of $Q(k)\backslash G(k)/G_o$. For each ξ_i, we define

$$R_{\xi_i, \infty} = \{g_\infty \in G(k_\infty)^1 : m_Q(g_\infty) = H_Q(\xi_ig_\infty)\}.$$

Since $G(k)$ is a disjoint union of $Q(k)\xi_iG_o$ for $i = 1, \ldots, h_Q$, $m_Q(g_\infty)$ equals

$$\min_{1 \leq i \leq h_Q} \min_{g_\infty \in G_o} H_Q(\xi_ig_\infty).$$
Lemma 18. \[R = \bigsqcup_{i=1}^{h_Q} Q(k)\xi_i (R_{\xi_i,\infty} \times K_f). \]

Proof. For each \(i \), \(Q(k)\xi_i (R_{\xi_i,\infty} \times K_f) \subset R \) is trivial. Since

\[G(\mathbb{A})^1 = \bigsqcup_{i=1}^{h_Q} Q(k)\xi_i G_{\mathbb{A},\infty}^1 \]

by [Borel 1963, §7], a given \(g \in R \) is represented as \(g = \gamma \xi_i (g_{\infty} \times g_f) \) for some \(i, \gamma \in Q(k) \) and \(g_{\infty} \times g_f \in G_{\mathbb{A},\infty}^1 \). Then \(m_Q(g) = H_Q(g) \) implies \(m_Q(g_{\infty}) = H_Q(\xi_i g_{\infty}) \). Therefore, \(g_{\infty} \in R_{\xi_i,\infty} \).

We write \(Q_i \) for the conjugate \(\xi_i^{-1} Q \xi_i \) of \(Q \). This \(Q_i \) is a maximal \(k \)-parabolic subgroup of \(G \). We put \(Q_{i,0} = Q_i(k) \cap G_{\mathbb{A},\infty} \).

Lemma 19. If \(g(R_{\xi_i,\infty} \times K_f) \cap (R_{\xi_i,\infty} \times K_f) \) is nonempty for \(g \in Q_i(k) \), then \(g \in Q_{i,0} \).

Proof. If there is an \(h \in R_{\xi_i,\infty} \times K_f \) such that \(gh \in R_{\xi_i,\infty} \times K_f \), then \(g \in (R_{\xi_i,\infty} \times K_f) h^{-1} \subset G_{\mathbb{A},\infty} \).

It is easy to prove that the group \(Q_{i,0} \) stabilizes \(R_{\xi_i,\infty} \times K_f \) by left multiplication.

We fix a complete system \(\{ \gamma_{ij} \}_j \) of representatives of \(Q_i(k)/Q_{i,0} \). It follows from Lemma 19 that \(\gamma_{ij}(R_{\xi_i,\infty} \times K_f) \cap \gamma_{ik}(R_{\xi_i,\infty} \times K_f) = \emptyset \) if \(j \neq k \). Therefore, we obtain the following subdivision of \(R \):

\[R = \bigsqcup_{i=1}^{h_Q} \bigsqcup_{j} \xi_i \gamma_{ij} (R_{\xi_i,\infty} \times K_f). \]

Let \(R_{\xi_i,\infty}^0 \) be the interior of \(R_{\xi_i,\infty} \) and \(R_{\xi_i,\infty}^* \) the closure of \(R_{\xi_i,\infty}^0 \) in \(G(k_{\infty})^1 \). Since the union of (1) is disjoint, it is obvious that

\[R_1^- = \bigsqcup_{i=1}^{h_Q} \bigsqcup_{j} \xi_i \gamma_{ij} (R_{\xi_i,\infty}^* \times K_f). \]

Proposition 20. Let \(\Omega_{i,\infty} \) be an open fundamental domain of \(R_{\xi_i,\infty}^* \) with respect to \(Q_{i,0} \) for \(i = 1, \ldots, h_Q \). Then the set

\[\Omega = \bigsqcup_{i=1}^{h_Q} \xi_i (\Omega_{i,\infty} \times K_f) \]

gives an open fundamental domain of \(R_1^- \) with respect to \(Q(k) \).
Proof. Let \(\Omega_{i,\infty}^- \) denote the closure of \(\Omega_{i,\infty} \) in \(G(k_\infty)^1 \). For \(g \in Q(k) \), we assume \(\Omega \cap g \Omega^- \neq \emptyset \). Then, for some \(i, j \),

\[
\xi_i(\Omega_{i,\infty} \times K_f) \cap g \xi_j(\Omega_{j,\infty}^- \times K_f) \neq \emptyset.
\]

There exist \(\gamma_{jk} \) and \(\delta \in Q_{j,o} \) such that \(\xi_j^{-1} g \xi_j = \gamma_{jk} \delta \). Then (3) is the same as

\[
\xi_i(\Omega_{i,\infty} \times K_f) \cap \xi_j \gamma_{jk}(\delta \Omega_{j,\infty}^- \times K_f) \neq \emptyset.
\]

By (1), we have \(i = j \), \(\gamma_{jk} = e \) and \(\Omega_{j,\infty} \cap \delta \Omega_{j,\infty}^- \neq \emptyset \). Since \(\Omega_{j,\infty} \) is an open fundamental domain of \(R^*_j,\infty \) with respect to \(Q_{j,o}, \delta \) must be equal to \(e \). Therefore, \(\Omega \cap g \Omega^- \neq \emptyset \) implies \(g = e \). Finally, \(Q(k) \Omega^- = R_1^- \) follows from (2) and \(Q_{i,o} \Omega_{i,\infty} = R^*_i,\infty \).

By Theorem 17, we obtain the following.

Corollary 21. If \(g_0 \in \Omega^- \) attains a local maximum of \(m_Q \), then \(g_0 \) is contained in the set

\[
\bigcup_{i=1}^{h_Q} \xi_i((\partial \Omega_{i,\infty}^- \cap \partial R^*_i,\infty) \times K_f).
\]

We consider the infinite part \(\Omega_\infty \) of \(\Omega \) given in Proposition 20, that is,

\[
\Omega_\infty = \bigcup_{i=1}^{h_Q} \xi_i \Omega_{i,\infty}^-.
\]

Let \(\Omega_\infty^\circ \) and \(\Omega_\infty^- \) be the interior and the closure of \(\Omega_\infty \) in \(G(k_\infty)^1 \), respectively. The projection from \(G(\mathbb{A})^1 = G(k) \mathbb{A}_{k,\infty} \) to the infinite component \(G(k_\infty)^1 \) gives an isomorphism \(G(k) \mathbb{A}_1^1/K_f \cong G_\infty \mathbb{A}(k_\infty)^1 \). Since \(\Omega \) is a fundamental domain of \(G(\mathbb{A})^1 \) with respect to \(G(k) \) by Theorem 15, we have \(G_\infty \Omega_\infty = G(k_\infty)^1 \).

Corollary 22. If \(h_Q = 1 \), then \(\Omega_\infty \) is a fundamental domain of \(G(k_\infty)^1 \) with respect to \(G_\infty \).

Proof. Since \(\Omega_\infty = \Omega_{1,\infty} \) is a relatively open set in \(R^*_e,\infty \), we have \(\Omega_\infty^\circ = \Omega_\infty \cap R^*_e,\infty \). Thus the closure of \(\Omega_\infty^\circ \) coincides with \(\Omega_\infty^- \). If \(\Omega_\infty^- \cap g \Omega_\infty^- \neq \emptyset \) for \(g \in G_\infty \), then \((\Omega_\infty^\circ \times K_f) \cap g(\Omega_\infty^- \times K_f) \neq \emptyset \) because \(gK_f = K_f \). This implies \(g = e \) since \(\Omega_\infty^\circ \times K_f \) is an open fundamental domain of \(G(\mathbb{A})^1 \) with respect to \(G(k) \).

7. Examples

Example 3. Let \(G \) be a general linear group \(GL_n \) defined over \(\mathbb{Q} \). We continue an illustration given in Examples 1 and 2. We fix an integer \(k \in \{1, \ldots, n-1\} \), and
We define the closed subset

\[Q(\mathbb{Q}) = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a \in \text{GL}_k(\mathbb{Q}), \ b \in \text{M}_{k,n-k}(\mathbb{Q}), \ d \in \text{GL}_{n-k}(\mathbb{Q}) \right\}. \]

Since \(h_Q = 1 \), we have \(\xi_1 = e \) and \(Q_1 = Q \).

Let \(P^1_n \) be the cone of positive definite \(n \) by \(n \) real symmetric matrices, and let \(P_n \) be the intersection of \(P^1_n \) and \(\text{SL}_n(\mathbb{R}) \). The group \(G(\mathbb{Q}_\infty) = \text{GL}_n(\mathbb{R}) \) acts on \(P_n \) from the right by \((A, g) \mapsto A[g] = t^g Ag \) for \((A, g) \in P_n \times G(\mathbb{Q}_\infty) \). The maximal compact subgroup \(K_\infty \) of \(G(\mathbb{Q}_\infty) \), defined as in Example 2, stabilizes the identity matrix \(I_n \in P_n \). The map \(\pi : g \mapsto t^g g^{-1} \) from \(G(\mathbb{Q}_\infty) \) onto \(P_n \) gives an isomorphism between \(G(\mathbb{Q}_\infty)/K_\infty \) and \(P_n \). Since

\[G(\mathbb{Q}_\infty)^1 = \{ g \in G(\mathbb{Q}_\infty) : \det g = \pm 1 \}, \]

we have \(G(\mathbb{Q}_\infty)^1/K_\infty \cong \pi(G(\mathbb{Q}_\infty)^1) = P^1_n \). An element \(A \in P_n \) is written as

\[A = \begin{pmatrix} I_k & 0 \\ t^u & I_{n-k} \end{pmatrix} \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix} \begin{pmatrix} I_k & u \\ 0 & I_{n-k} \end{pmatrix}, \]

where \(v \in P_k, \ w \in P_{n-k} \) and \(u \in \text{M}_{k,n-k}(\mathbb{R}) \). We write \(uA, \ A^k \) and \(A_{[n-k]} \) for \(u, \ v \) and \(w \), respectively.

By definition, \(G_Z = G(\mathbb{Q}) \cap G_{\mathbb{A},\infty} \) and \(Q_Z = Q(\mathbb{Q}) \cap G_{\mathbb{A},\infty} \) are just the groups \(\text{GL}_n(\mathbb{Z}) \) and \(Q(\mathbb{Q}) \cap \text{GL}_n(\mathbb{Z}) \) of unimodular integral matrices in \(G(\mathbb{Q}) \) and \(Q(\mathbb{Q}) \), respectively. As in Example 2, \(X_\gamma \) stands for the \(n \) by \(k \) matrix consisting of the first \(k \)-columns of \(\gamma \in G_Z \), and \(M_{n,k}(\mathbb{Z})^* \) stands for the set of \(X_\gamma \) for all \(\gamma \in G_Z \). We define the closed subset \(F_{n,k} \) of \(P_n \) as follows:

\[F_{n,k} = \left\{ A \in P_n : \det A^k \leq \det(t^{XAX}) \text{ for all } X \in M_{n,k}(\mathbb{Z})^* \right\}. \]

In Example 2, we showed

\[H_Q(\gamma g) = \det(t^{X_{\gamma^{-1}} \pi(g) X_{\gamma^{-1}}})^{n/2r} \]

for any \(\gamma \in G_Z \) and \(g \in G(\mathbb{Q}_\infty)^1 \). Since \(H_Q(g) = (\det \pi(g)^{[k]})^{n/2r} \), we obtain

\[R_{e,\infty}/K_\infty \cong \pi(R_{e,\infty}) = F_{n,k} \cap \text{SL}_n(\mathbb{R}). \]

Therefore, \(Q_Z \setminus R_{e,\infty}/K_\infty \) is isomorphic to \((F_{n,k} \cap \text{SL}_n(\mathbb{R}))/Q_Z \). If \(\gamma \in Q_Z \) is of the form

\[\gamma = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \]

with \(a \in \text{GL}_k(\mathbb{Z}), \ d \in \text{GL}_{n-k}(\mathbb{Z}) \) and \(b \in \text{M}_{k,n-k}(\mathbb{Z}) \), then components of \(t^{\gamma} A \gamma \) for \(A \in P_n \) are given by

\[u_{\gamma} A_{\gamma} = a^{-1}(u_A d + b), \quad (t^{\gamma} A \gamma)^{[k]} = t^{a A^{[k]}} a, \quad (t^{\gamma} A \gamma)_{[n-k]} = t^{d A_{[n-k]} d}. \]
Let \mathcal{D} and \mathcal{E} be arbitrary fundamental domains for the quotients $P_k/\text{GL}_k(\mathbb{Z})$ and $P_{n-k}/\text{GL}_{n-k}(\mathbb{Z})$, respectively. We define the subset $F_{n,k}(\mathcal{D}, \mathcal{E})$ of $F_{n,k}$ as

$$F_{n,k}(\mathcal{D}, \mathcal{E}) = \{ A \in F_{n,k} : A[k] \in \mathcal{D}, A[n-k] \in \mathcal{E},$$

$$u_A = (u_{ij}) = (-\frac{1}{2} \leq u_{ij} \leq \frac{1}{2} \text{ for all } i, j, \text{ and } 0 \leq u_{11}) \}.$$

Since $F_{n,k}(\mathcal{D}, \mathcal{E})$ is a fundamental domain of $F_{n,k}$ with respect to $Q_\mathbb{Z}$, the inverse image $\pi^{-1}(F_{n,k}(\mathcal{D}, \mathcal{E}) \cap \text{SL}_n(\mathbb{R}))$ of $F_{n,k}(\mathcal{D}, \mathcal{E}) \cap \text{SL}_n(\mathbb{R})$ gives a fundamental domain of $R_{e,\infty}$ with respect to $Q_\mathbb{Z}$. As a consequence of Theorem 15 and Proposition 20, the set

$$\pi^{-1}(F_{n,k}(\mathcal{D}, \mathcal{E}) \cap \text{SL}_n(\mathbb{R})) \times K_f$$

gives a fundamental domain of $G(\mathbb{A})^1$ with respect to $G(\mathbb{Q})$. Moreover, from Corollary 22, it follows that $F_{n,k}(\mathcal{D}, \mathcal{E})$ is a fundamental domain of P_n with respect to $\text{GL}_n(\mathbb{Z})$.

In the case of $k = 1$, this gives an inductive construction of a fundamental domain Ω_n of P_n with respect to $\text{GL}_n(\mathbb{Z})$ as follows. First, put $\Omega_2 = F_{2,1}(P_1, P_1)$. By definition, Ω_2 is Minkowski’s fundamental domain of P_2. Then we define inductively $\Omega_3 = F_{3,1}(P_1, \Omega_2), \ldots, \Omega_n = F_{n,1}(P_1, \Omega_{n-1})$. The domain Ω_n coincides with Grenier’s fundamental domain $[1988]$.

Finally, we show that, in the case of $k = 1$, $R_{e,\infty}/K_\infty$ corresponds to a face of the Ryshkov polyhedron $R(m) = \{ A \in P_n : m(A) = \min_{0 \neq x \in \mathbb{Z}^n} \langle x, Ax \rangle \geq 1 \}$. For $A \in P_n$, let $S(A)$ denote the set of minimal integral vectors of A:

$$S(A) = \{ x \in \mathbb{Z}^n : m(A) = \langle x, Ax \rangle \}.$$

We take $e_1 = t(1, 0, \ldots, 0) \in \mathbb{Z}^n$. It is obvious that the subset $\{ A \in P_n : e_1 \in S(A) \}$ of P_n coincides with $F_{n,1}$. As was shown in [Watanabe 2012, Lemma 1.5], $\mathcal{F}_{\{e_1\}} = F_{n,1} \cap \partial R(m) = \{ A \in F_{n,1} : m(A) = 1 \}$ is a face of $R(m)$. It is easy to see that the map $A \mapsto m(A)^{-1}A$ gives a bijection from $F_{n,1} \cap \text{SL}_n(\mathbb{R})$ onto $\mathcal{F}_{\{e_1\}}$. Therefore, $R_{e,\infty}/K_\infty \cong \pi(R_{e,\infty})$ corresponds to $\mathcal{F}_{\{e_1\}}$.

Example 4. Let k be a totally real number field of degree r and $n = 2m$ be an even integer. We consider a symplectic group

$$G(k) = \text{Sp}_n(k) = \left\{ g \in \text{GL}_{2m}(k) : t^g \begin{pmatrix} 0 & -I_m \\ I_m & 0 \end{pmatrix} g = \begin{pmatrix} 0 & -I_m \\ I_m & 0 \end{pmatrix} \right\}.$$

For a fixed $k \in \{1, 2, \ldots, m\}$, let Q denote the maximal parabolic subgroup of G given by

$$Q(k) = U(k)M(k),$$
where
\[
M(k) = \left\{ \delta(a, b) = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b_{11} & 0 & b_{12} \\ 0 & 0 & t_a^{-1} & 0 \\ 0 & b_{21} & 0 & b_{22} \end{pmatrix} : a \in \text{GL}_k(k), \\
& b = (b_{ij}) \in \text{Sp}_{2(m-k)}(k) \right\}.
\]

\[
U(k) = \left\{ \begin{pmatrix} I_k & * & * & * \\ 0 & I_{m-k} & * & 0 \\ 0 & 0 & I_k & 0 \\ 0 & 0 & * & I_{m-k} \end{pmatrix} \in G(k) \right\}.
\]

The module of \(k\)-rational characters \(X^*(M)_k\) of \(M\) is a free \(\mathbb{Z}\)-module of rank 1 generated by the character
\[
\hat{\alpha}_Q(\delta(a, b)) = \det a.
\]

The height \(H_Q : G(\mathbb{A}) \rightarrow \mathbb{R}_{>0}\) is given by \(H_Q(g) = |\det a|_\mathbb{A}^{-1}\) if \(g = u\delta(a, b)h\) with \(u \in U(\mathbb{A}), \delta(a, b) \in M(\mathbb{A})\) and \(h \in K\).

We restrict ourselves to the case \(k = m\). An element of \(M(\mathbb{A})\) is denoted by
\[
\delta(a) = \begin{pmatrix} a & 0 \\ 0 & t_a^{-1} \end{pmatrix}, \quad a \in \text{GL}_m(\mathbb{A}).
\]

Let
\[
H_m = \{ Z \in M_m(\mathbb{C}) : ^tZ = Z, \quad \text{Im}Z \in \mathbb{P}_m \}
\]
be the Siegel upper half space and \(H'_m\) the direct product of \(r\) copies of \(H_m\). For \(Z = (Z_\sigma)_{\sigma \in \text{p}_\infty} \in H'_m, \text{Re}Z, \text{Im}Z\) and \(\text{det} Z\) stand for \((\text{Re}Z_\sigma)_{\sigma \in \text{p}_\infty}, (\text{Im}Z_\sigma)_{\sigma \in \text{p}_\infty}\) and \((\text{det} Z_\sigma)_{\sigma \in \text{p}_\infty}\), respectively. The group \(G(k_\infty)\) acts transitively on \(H'_m\) by
\[
gZ = ((a_\sigma Z_\sigma + b_\sigma)(c_\sigma Z_\sigma + d_\sigma)^{-1})_{\sigma \in \text{p}_\infty}
\]
for \(Z = (Z_\sigma) \in H'_m\) and
\[
g = (g_\sigma) = \begin{pmatrix} a_\sigma & b_\sigma \\ c_\sigma & d_\sigma \end{pmatrix}_{\sigma \in \text{p}_\infty} \in G(k_\infty).
\]

The stabilizer \(K_\infty\) of \(Z_0 = (\sqrt{-1}I_m, \ldots, \sqrt{-1}I_m) \in H'_m\) in \(G(k_\infty)\) is a maximal compact subgroup of \(G(k_\infty)\). We choose \(K\) as \(K_\infty \times \prod_{\sigma \in \text{p}_\infty} \text{Sp}_n(\text{o}_\sigma)\). The map \(\pi : g_\infty \mapsto g\{Z_0\}\) from \(G(k_\infty)\) onto \(H'_m\) gives an isomorphism \(G(k_\infty)/K_\infty \cong H'_m\), and hence \(G(k)\backslash G(\mathbb{A})/K \cong G_0\backslash H'_m\). Since \(\text{Im}\{u\delta(a)h\{Z_0\}\} = a^t a\) holds for \(u \in U(k_\infty), a \in \text{GL}_m(k_\infty)\) and \(h \in K_\infty\), we have
\[
H_Q(g_\infty) = \text{Nr}_{k_\infty/\mathbb{R}}(\det \text{Im}\{g_\infty\{Z_0\}\})^{-1/2} = \left(\prod_{\sigma \in \text{p}_\infty} \det \text{Im}\{g_\sigma\{\sqrt{-1}I_m\}\} \right)^{-1/2}
\]
for any \(g_\infty = (g_\sigma) \in G(k_\infty)\), where \(\text{Nr}_{k_\infty/\mathbb{R}}\) denotes the norm of \(k_\infty\) over \(\mathbb{R}\).
The class number h_Q of $M \cong \text{GL}_m$ defined over k is equal to the class number h_k of k. We assume $h_k = 1$ for simplicity. Then $G(k) = Q(k)G_\circ$ and $G(\mathbb{A}) = Q(k)G_{\mathbb{A},\infty}$, and hence

$$m_Q(g_\infty) = \min_{\gamma \in G_\circ} H_Q(\gamma g_\infty).$$

Since

$$\text{Nr}_{k_\infty/\mathbb{R}}(\det \text{Im}\{\gamma(Z)\}) = \prod_{\sigma \in \mathbb{P}_\infty} |\det(\sigma(c)Z_\sigma + \sigma(d))|^{-2} \text{Nr}_{k_\infty/\mathbb{R}}(\det \text{Im}Z)$$

for $Z = (Z_\sigma) \in H^r_m$ and

$$\gamma = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in G_\circ = \text{Sp}_n(o),$$

the condition $m_Q(g_\infty) = H_Q(g_\infty)$ of g_∞ is equivalent with the following condition of $Z = g_\infty(Z_0)$:

$$\prod_{\sigma \in \mathbb{P}_\infty} |\det(\sigma(c)Z_\sigma + \sigma(d))| \geq 1 \quad \text{for all} \quad \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in G_\circ.$$

Therefore, the domain $R_{e,\infty}$ modulo K_∞ is isomorphic to

$$F = \left\{ (Z_\sigma) \in H^r_m : \prod_{\sigma \in \mathbb{P}_\infty} |\det(\sigma(c)Z_\sigma + \sigma(d))| \geq 1 \text{ for all } \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in G_\circ \right\}.$$

Let \mathcal{C} be an arbitrary fundamental domain of the additive group $M_m(k_\infty)$ with respect to $M_m(o)$, and let \mathcal{D} be an arbitrary fundamental domain of P^r_m with respect to $\text{GL}_m(o)$. It is easy to see that

$$F(\mathcal{C}, \mathcal{D}) = \{ Z \in F : \text{Re}Z \in \mathcal{C}, \text{Im}Z \in \mathcal{D} \}$$

is a fundamental domain of F with respect to Q_\circ. By Corollary 22, $F(\mathcal{C}, \mathcal{D})$ is a fundamental domain of H^r_m with respect to G_\circ.

If $k = \mathbb{Q}$ and \mathcal{D} is Minkowski’s fundamental domain, then $F(\mathcal{C}, \mathcal{D})$ coincides with Siegel’s fundamental domain [1939].

Acknowledgments. The author would like to thank Professor Takahiro Hayata for useful discussions.

References

Received March 29, 2013. Revised July 30, 2013.

TAKAO WATANABE

GRADUATE SCHOOL OF SCIENCE

OSAKA UNIVERSITY

MACHIKANEYAMA 1-1

TOYONAKA 560-0043

JAPAN

twatanabe@math.sci.osaka-u.ac.jp
Hermitian categories, extension of scalars and systems of sesquilinear forms
EVA BAYER-FLUCKIGER, URIYA A. FIRST and DANIEL A. MOLDOVAN

Realizations of the three-point Lie algebra sl(2, \mathbb{R}) \oplus ($\Omega_{\mathbb{R}}/d\mathbb{R}$)
BEN COX and ELIZABETH JURISICH

Multi-bump bound state solutions for the quasilinear Schrödinger equation with critical frequency
YUXIA GUO and ZHONGWEI TANG

On stable solutions of the biharmonic problem with polynomial growth
HATEM HAJLAOUI, ABDELLAZIZ HARRABI and DONG YE

Valuative multiplier ideals
ZHENGYU HU

Quasiconformal conjugacy classes of parabolic isometries of complex hyperbolic space
YOUNGJU KIM

On the distributional Hessian of the distance function
CARLO MANTEGAZZA, GIOVANNI MASCELLANI and GENNADY URALTSEV

Noether’s problem for abelian extensions of cyclic p-groups
IVO M. MICHAILOV

Legendrian θ-graphs
DANIELLE O’DONNOL and ELENA PAVELESCU

A class of Neumann problems arising in conformal geometry
WEIMIN SHENG and LI-XIA YUAN

Ryshkov domains of reductive algebraic groups
TAKAO WATANABE